Sachverständigenbüro

Beurteilung von Trink- und Brauchwasseranalysen: Allgemeine und korrosionschemische Eigenschaften Mischbarkeit von Wässern Plausibilitätsprüfung Vom Bayerischen Landesamt für Umweltschutz anerkannt als privater Sachverständiger in der Wasserwirtschaft für Eigenüberwachung (eingeschränkt auf Wasserversorgungsanlagen) gem. § 1 Nr. 7 VPSW

Esterbergstr. 28 82319 Starnberg

Tel. 08151/6521077 Fax 08151/449043

Email: svbuero.dr.busse@gmail.com

Seite 1 von 5 Seiten

Auftraggeber: ZV zur WV Ammersee-West

Uttinger Str. 39 86938 Schondorf

Projekt: Versorgungsnetz Bischofsried (Brunnen 4 + 5)

Auftrag: Untersuchung auf Parameter der Gruppe B (Standardmikrobiolo-

gie, Enterokokken, Anlage 2 Teil I und II und Anlage 3 TrinkwV)

PSM, Sauerstoff

Entnahmedatum: 09.03.21

Beurteilung der Prüfergebnisse

Anlagen: Beurteilungsgrundlagen und Abkürzungsverzeichnis

Ergebnisübersichten (6 Seiten)

Prüfberichte

Eching, den 15.03.2021

Dr. Timm Busse

staatl. gepr. Lebensmittelchemiker

Sachverständigenbüro

Beurteilung von Trink- und Brauchwasseranalysen: Allgemeine und korrosionschemische Eigenschaften Mischbarkeit von Wässern Plausibilitätsprüfung Vom Bayerischen Landesamt für Umweltschutz anerkannt als privater Sachverständiger in der Wasserwirtschaft für Eigenüberwachung (eingeschränkt auf Wasserversorgungsanlagen) gem. § 1 Nr. 7 VPSW

Esterbergstr. 28 82319 Starnberg

Tel. 08151/6521077 Fax 08151/449043

Email: svbuero.dr.busse@gmail.com

Seite 2 von 5 Seiten

BEURTEILUNG DER ERGEBNISSE

1 Allgemeine Beurteilung

Die Ergebnisse zeigen, dass es sich um ein Wasser vom Typ normal erdalkalisch, überwiegend hydrogencarbonatisch handelt, dessen Gesamthärte von 22,1°dH dem durch das Waschmittelgesetz festgelegten Härtebereich "hart" entspricht.

Die Werte für Natrium, Kalium, Nitrat, Chlorid und TOC (gesamter organischer Kohlenstoff, Summenparameter für organische Substanz) liegen im Normalbereich.

Pflanzenschutzmittel und Biozidprodukte (PSM) sind - soweit untersucht - nicht nachweisbar. Der Grenzwert für PSM gilt damit als eingehalten.

Reduzierende Bedingungen liegen nicht vor. Der Sauerstoffgehalt liegt nur wenig unter dem Bereich der Sättigung und Eisen, Mangan, Arsen und Ammonium sind nicht nachweisbar.

Die physikalisch-chemischen Untersuchungen auf die Parameter der Anlage 2 der TrinkwV ergeben - soweit untersucht - keinen Grund zur Beanstandung.

Auch die Grenzwerte für die Indikatorparameter der Anlage 3 der TrinkwV sind - soweit untersucht - eingehalten.

Der Vergleich mit den bislang erhaltenen Ergebnissen ist ohne Besonderheit.

Die mikrobiologischen Befunde sind einwandfrei.

2 Korrosionschemische Beurteilung¹

Mit einer Calcitabscheidekapazität von -35 mg/l CaCO₃/l hat das Wasser eine stark kalkabscheidende Tendenz. Die relativ große Schwankungsbreite der Calictlösekapazität dürfte auf die Befüllung des Behälters im freien Einlauf von oben im Zusammenhang mit unterschiedlichen Füllhöhen zurückzuführen sein. Die Forderungen der TrinkwV an die Calcitlösekapazität sind mit negativen Werten eingehalten.

Die anderen in den einschlägigen Normen (DIN EN 12502 Teil 2 – 5, DIN 50 930 Teil 6) genannten Parameter pH-Wert, Base- und Säurekapazität, Sauerstoff-, Calcium-, Nitrat-, Chlorid- und Sulfatgehalt entsprechen den dort genannten Anforderungen, zur Schutzschichtbildung auf

Sachverständigenbüro

Beurteilung von Trink- und Brauchwasseranalysen: Allgemeine und korrosionschemische Eigenschaften Mischbarkeit von Wässern Plausibilitätsprüfung Vom Bayerischen Landesamt für Umweltschutz anerkannt als privater Sachverständiger in der Wasserwirtschaft für Eigenüberwachung (eingeschränkt auf Wasserversorgungsanlagen) gem. § 1 Nr. 7 VPSW

Esterbergstr. 28 82319 Starnberg

Tel. 08151/6521077 Fax 08151/449043

Email: svbuero.dr.busse@gmail.com

Seite 3 von 5 Seiten

- Gusseisen und niedrig- und unlegierten Stählen,
- nichtrostenden Stählen,
- · Kupfer und Kupferlegierungen und
- innen verzinntem Kupfer,

sodass bei diesen Werkstoffen die Anforderungen, die aus korrosionschemischer Sicht an Trinkwasser gestellt werden, grundsätzlich erfüllt sind.

Asbestzement und andere zementgebundene Werkstoffe werden nicht angegriffen.

Einschränkungen:

Schmelztauchverzinkte Eisenwerkstoffe dürfen nicht mehr eingesetzt werden, da die Basekapazität bis pH 8,2² größer als 0,2 mmol/l ist (§ 17 Absatz 3 TrinkwV in Verbindung mit der Bewertungsgrundlage für metallene Werkstoffe im Kontakt mit Trinkwasser (Metall-Bewertungsgrundlage) des Umweltbundesamts (UBA) vom Mai 2020)³.

Bei schmelztauchverzinkten Eisenwerkstoffen ist darüber hinaus die Wahrscheinlichkeit der selektiven Korrosion (Zinkgerieselkorrosion) erhöht, da der Quotient S₂⁴

$$\frac{c(Cl^{-}) + 2c(SO_{4}^{2-})}{c(NO_{3}^{-})}$$

kleiner als 3 und größer als 1 ist und zugleich der Nitratgehalt im kritischen Bereich, der bei 0,3 mmol/l (= 18,6 mg/l) beginnt, liegt (DIN EN 12502 Teil 3).

Im Warmwasserbereich darf generell - d. h. unabhängig vom Chemismus - verzinkter Stahl nicht verwendet werden (§ 17 Absatz 3 TrinkwV i. V. mit der Metall-Bewertungsgrundlage des UBA).

Verzinkter Stahl sollte daher in der Trinkwasserinstallation prinzipiell nicht eingesetzt werden. Grundsätzlich gilt, dass Werkstoffe für neue Installationssysteme so ausgewählt werden müssen, dass gesonderte Schutzmaßnahmen nicht erforderlich sind. Wird allerdings bei älteren Anlagen eine erhöhte Abgabe von Korrosionsprodukten infolge einer erhöhten Basekapazität bis pH 8,2, eines zu hohen Neutralsalzquotienten S1 oder eines zu hohen Zinkgerieselquotienten S2 festgestellt, lässt sich diese durch die Zugabe von Korrosionsschutzmitteln, wie Phosphate, Silikate oder deren Gemische, günstig beeinflussen. Es dürfen nur zugelassene Zusatzstoffe und zertifizierte Dosiersysteme verwendet werden.

Sachverständigenbüro

Beurteilung von Trink- und Brauchwasseranalysen: Allgemeine und korrosionschemische Eigenschaften Mischbarkeit von Wässern Plausibilitätsprüfung Vom Bayerischen Landesamt für Umweltschutz anerkannt als privater Sachverständiger in der Wasserwirtschaft für Eigenüberwachung (eingeschränkt auf Wasserversorgungsanlagen) gem. § 1 Nr. 7 VPSW

Esterbergstr. 28 82319 Starnberg

Tel. 08151/6521077 Fax 08151/449043

Email: svbuero.dr.busse@gmail.com

Seite 4 von 5 Seiten

- ➤ Messinge haben eine hohe Anfälligkeit für Spannungsrisskorrosion. Das Schadensrisiko lässt sich vermindern, wenn bei der Verarbeitung der Bauteile kritische Zugspannungen vermieden werden. Eine Wärmebehandlung der fertigen Bauteile reduziert die Wahrscheinlichkeit der Spannungsrisskorrosion insgesamt (DIN EN 12502 Teil 2). Die Wahrscheinlichkeit der Entzinkung von Messing steigt mit dem Zinkgehalt und der Temperatur (DIN EN 12502 Teil 2). Entzinkungsbeständige Messinge hemmen die Entzinkung.
- Die elektrische Leitfähigkeit (bei 20°C)⁵ ist größer als 500 μS/cm und liegt damit in einem Bereich, in dem die Korrosionswahrscheinlichkeit bei Edelstahlplattenwärmetauschern, die mit Kupfer hartgelötet sind, erhöht sein kann.

Zusammenfassung:

Aus korrosionschemischer Sicht können außer verzinktem Stahl grundsätzlich alle im Verteilungsnetz und in der Trinkwasserinstallation üblichen Werkstoffe eingesetzt werden. Im Falle von Edelstahlplattenwärmetauschern, die mit Kupfer hartgelötet sind, sollte beim Hersteller abgeklärt werden, ob sie unter den gegebenen Umständen eingesetzt werden können.

Erläuterungen:

¹ Die korrosionschemische Beurteilung berücksichtigt in erster Linie den Einfluss der wasserchemischen Faktoren und liefert für die Werkstoffauswahl wichtige Hinweise. Darüber hinaus sind weitere Einflussgrößen für das Korrosionsgeschehen in wasserführenden Systemen von wesentlicher Bedeutung. Auf einige, aus unserer Sicht besonders wichtige Einschränkungen, die über die wasserseitigen Bedingungen hinausgehen, wird verwiesen. Detaillierte Hinweise zur Abschätzung des Einflusses von Faktoren, wie Werkstoffzusammensetzung, Ausführung und Betriebsbedingungen finden sich in DIN EN 12502 Teil 2 – 5 und DIN 50930 Teil 6.

- ² Die Basekapazität bis pH 8,2 ist näherungsweise dem Gehalt an gelöstem Kohlenstoffdioxid ("Kohlensäure") gleichzusetzen. Welche Menge an Kohlenstoffdioxid in jedem einzelnen Fall erforderlich ist, um einerseits Kalkausfällungen und andererseits ein zu hohes Kalklösungsvermögen zu vermeiden, hängt neben der Temperatur im Wesentlichen vom Kalkgehalt des Wassers ab. D. h., je höher - natur- bzw. bodenbedingt - der Kalkgehalt eines Wassers ist, desto höher muss der Gehalt an Kohlenstoffdioxid und damit auch der Wert für die Basekapazität bis pH 8,2 sein, damit das Wasser im "Kalk-Kohlensäure-Gleichgewicht" liegt.
- ³ Ausnahmen von dieser Regelung sind nur nach Einzelfallprüfung gemäß DIN EN 15664 Teil 1 möglich.
- ⁴ Zinkgerieselkorrosion führt zur Abgabe sandähnlicher Partikel an das Wasser und in der Folge häufig auch zu Braunfärbung und Trübung sowie Mulden- und/oder Lochkorrosion. Sie wird durch Chlorid- und Sulfationen einerseits und Nitrationen andererseits unterschiedlich beeinflusst

Sachverständigenbüro

Beurteilung von Trink- und Brauchwasseranalysen: Allgemeine und korrosionschemische Eigenschaften Mischbarkeit von Wässern Plausibilitätsprüfung Vom Bayerischen Landesamt für Umweltschutz anerkannt als privater Sachverständiger in der Wasserwirtschaft für Eigenüberwachung (eingeschränkt auf Wasserversorgungsanlagen) gem. § 1 Nr. 7 VPSW

Esterbergstr. 28 82319 Starnberg

Tel. 08151/6521077 Fax 08151/449043

Email: svbuero.dr.busse@gmail.com

Seite 5 von 5 Seiten

und die Korrosionswahrscheinlichkeit lässt sich durch den "Zinkgerieselquotienten" S_2 mit den Konzentrationen (in mmol/l) der Summe von Chlorid und 2 x Sulfat im Zähler und Nitrat im Nenner beschreiben. Ist S_2 größer als 1 und kleiner als 3 und zugleich die Nitratkonzentration größer als 0,3 mmol/l (= ca. 19 mg/l) ist die Wahrscheinlichkeit der Zinkgerieselkorrosion als hoch einzustufen

⁵ Die elektrische Leitfähigkeit ist vom Gesamtsalzgehalt abhängig. Bei den meisten Trinkwässern wird die Leitfähigkeit im Wesentlichen durch den Kalkgehalt bestimmt. Die Wahrscheinlichkeit von Kontakt- und Spaltkorrosion nimmt mit dem Salzgehalt und damit auch der Leitfähigkeit zu.